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Bayesian methods

• Bayesian inference

– represents uncertainty about parameters by probability 
distributions

– uses probability theory in a complete and coherent way to 
update this uncertainty based on relevant information

– works in the same simple way for any probabilistic model 
that relates parameters to data

• This allows principled, complete, and coherent

– Inferences about parameters

– Evaluation and comparison of models

– Predictions about data



Bayesian methods

• Bayesian methods let you infer parameters, evaluate models, 
and understand and make predictions about data

• Three types of application in psychology



Bayesian methods

• Bayesian methods let you infer parameters, evaluate models, 
and understand and make predictions about data

• Three types of application in psychology

– Bayes in the head: Use Bayes as a theoretical metaphor, 
assuming that when people make inferences they apply 
Bayesian methods (at some level) 

Josh Tenenbaum Tom Griffiths Nick Chater Charles Kemp



Bayesian methods

• Bayesian methods let you infer parameters, evaluate models, 
and understand and make predictions about data

• Three types of application in psychology

– Bayes in the head

– Bayes for data analysis: Instead of using frequentist 
estimation, confidence intervals, null hypothesis testing, 
and so on, use Bayesian inference to analyze data

EJ Wagenmakers Jeff Rouder Richard Morey John Kruschke



Bayesian methods

• Bayesian methods let you infer parameters, evaluate models, 
and understand and make predictions about data

• Three types of application in psychology

– Bayes in the head

– Bayes for data analysis

– Bayes for cognitive modeling: Use Bayesian inference to 
relate models of psychological processes to behavioral data

EJ Wagenmakers Wolf Vanpaemel



Bayesian methods for cognitive modeling

• Bayesian methods are a way of relating

– parameters, representing psychological variables

– and models, assumptions about how parameters generate 
behavior

– to data that can be observed and measured



Bayesian methods for cognitive modeling

• Psychological models can be thought of as cognitive processes, 
controlled by psychological variables, that generate data
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Bayesian methods for cognitive modeling

• The data generating function and the prior distribution on 
parameters formalize the model
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Bayesian methods for cognitive modeling

• This model, which combines the prior and data generating 
function (aka likelihood function), predict observed data 
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Bayesian methods for cognitive modeling

• Once data are observed, probability theory (via Bayes theorem) 
allows the prior over parameters to be updated to a posterior
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Bayesian methods for cognitive modeling

• The posterior distribution over parameters quantifies 
uncertainty, and makes new predictions
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Bayesian methods for cognitive modeling

• Bayesian inference is a complete framework for representing 
and incorporating information
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Joram
van Driel

A case study in psychophysical modeling



Experiment and data

• 19 subjects did visual and auditory psychophysical 
discrimination tasks with 240 trials each

– Whether an LED light or a beep was shorter or longer than a 
500ms standard



Behavioral data for six subjects



Research questions

• Some possible research questions include

– What’s the form of the psychophysical function?

– What parameters of that function describe each subject?

– Are there individual differences in the function or 
parameters?

– Are there differences depending on the modality?

– Are there sequential dependencies in responding, or any 
sort of adaptation or learning?

– Are there lapses that lead to contaminant trials?

– ….



Two psychophysical functions

• Both have shift and scale parameters



Graphical model representation of a logistic model

• Graphical models are a useful and fairly general language for 
implementing probabilistic models of cognition

– A good language for using BUGS, JAGS, Stan to automate 
computational Bayesian inference



Prior on psychophysical function



Prior predictive



Models need a likelihood and prior

• A defining property of a scientific model is that it makes 
predictions (Feynman, 1994)

– this requires both a likelihood (a cognitive process) and a 
prior (information about the variables that control that 
process)

• Even proponents of Bayesian inference are sometimes 
apologetic about priors, viewing them as a sort of necessary 
evil (e.g., Myung & Pitt, 1997)

• Our view is that it is a key feature of the Bayesian approach 
that the prior distribution over parameters has the same status 
as the likelihood as a vehicle to formalize theory and 
assumptions (Vanpaemel & Lee, 2012; Lee & Vanpaemel, 2015)



Vague vs informative priors

• It is common practice to use “non-informative” (“weakly-
informative”, “vague”, “flat”, …) priors in cognitive modeling

• Conceptually, the idea seems to be something like “letting the 
data speak for themselves” or “not letting assumptions 
influence the results”

• In practice the approach is something like “[t]ypically, a non-
informative prior would be represented by a distribution with a 
relatively flat density, where the different values the parameter 
can take on have approximately equal likelihood under the 
distribution” (Depaoli & van de Schoot, 2015)

• Our view is that these are conceptual and practical mistakes, 
and priors should be our best attempt to formalize
what we know and assume, as we do for likelihoods



Alternative models

• “vague” priors on the shift and scale parameters

• “vague” priors on the shift and scale parameters, in a different 
parameterization



Prior on psychophysical function of model with flat prior



Prior predictive with flat prior



Prior on psychophysical function with other flat prior



Prior predictive with other flat prior



Graphical model for inference

• To make inferences based on data, the data node is now 
observed

• Bayes rule automatically now implies a joint posterior 
distribution in the parameter space

– Computational approximation of samples from this joint 
posterior found by JAGS (BUGS, Stan, …)



Graphical model for inference

• To make inferences based on data, the data node is now 
observed

• Bayes rule automatically now implies a joint posterior 
distribution in the parameter space

– Computational approximation of samples from this joint 
posterior found by JAGS (BUGS, Stan, …)

model{
# Likelihood
for (trial in 1:nTrials){
theta[trial] = 1/(1+exp(-(stimulus[trial]-standard-alpha)/beta))
y[trial] ~ dbern(theta[trial])

}
# Priors
alpha ~ dnorm(0,1/50^2)
beta ~ dnorm(0,1/100^2)T(0,)

}



Inference for subject A



Interpretation of shift parameter posterior

• The posterior distribution provides a complete representation 
of uncertainty, that can be summarized by credible intervals, 
probabilities of ranges, relative densities, point estimates, …



Model selection and parameter inference

• Proponents of Bayesian methods sometimes try to use 
parameter inference to make model selection decisions

– e.g., testing whether a parameter value is “credibly 
different” from 0, or has bounds within a “region of 
practical equivalence (ROPE)”

• Our view is this is conceptually wrong (because the parameter 
inference is conditional on the model being tested, and so has 
already been assumed true) and perilous in practice (which 
credible interval?)

• Probability theory leads to Bayes factors as a measure to 
compare models



Model testing

• For nested models, the Savage-Dickey method estimates of 
Bayes factors from prior and posterior distributions

– e.g., BF about 7 in favor of no-bias for shift, and massively in 
favor of non-step-function for scale

• Conceptually, Bayes factors are possible for non-nested 
models, but often harder to estimate in practice



Posterior predictive



Prediction and description

• The agreement between the observed data and posterior 
predictive distribution is often called the “goodness-of-fit” or 
“fit” in both Bayesian and other modeling approaches

• We think these terms are very unhelpful (Roberts & Pashler, 
2000), especially when researchers call fitted values 
“predictions” in their papers

• The idea of fit leads to bad but pervasive practices: “[t]o 
formally test their theory, mathematical psychologists rely on 
their model's ability to fit behavioral data” (Turner et al, 2016)

• The emphasis should be on the model’s ability to predict the 
data (via the prior predictive, on which Bayes factors are based) 
and not its ability to re-describe the data once it has
already seen it



Testing sensitivity to priors

• It is true that the inferences depend on the choice of priors

– This is desirable, since they are modeling assumptions

• If there is a range of possible priors consistent with an 
(imprecise, under-developed) theory, it is important to test the 
robustness or sensitivity of inferences to the range

• Posterior distributions for 3 other priors in a reasonable range 
are shown



Testing sensitivity to the likelihood

• It is also true that the inferences depend on the choice of 
likelihood function

– This is also desirable, since they are modeling assumptions

• Researchers who are very concerned about the influence of 
priors seem not to worry about the influence of equally 
arbitrary choices in the likelihood

– These sorts of sensitivities should be tested in the same 
way, and for the same reasons, as priors



Learner (1983, p. 37) had it right

• The difference between a fact and an opinion for purposes of 
decision making and inference is that when I use opinions, I get 
uncomfortable. I am not too uncomfortable with the opinion that 
error terms are normally distributed because most econometricians 
make use of that assumption.

• This observation has deluded me into thinking that the opinion that 
error terms are normal may be a fact, when I know deep inside that 
normal distributions are actually used only for convenience.

• In contrast, I am quite uncomfortable using a prior distribution, 
mostly I suspect because hardly anyone uses them.

• If convenient prior distributions were used as often as convenient 
sampling distributions, I suspect that I could be as easily deluded into 
thinking that prior distributions are facts as I have been into thinking 
that sampling distributions are facts.



Sensitivity to a form of sequential dependency

• One strong assumption in the current model is the 
independence of trials

– There is no influence from one trial to the next

• To test the sensitivity of inferences to this assumption, consider 
a modified model that allows for a simple sequential 
dependency



Inferences for sequential dependency model



Flexibility of Bayesian methods

• Beyond the conceptual coherence and completeness, the great 
advantage of Bayesian methods is they allow cognitive that are 
more complicated than the standard one to be considered



Latent-mixture modeling

• Latent-mixture models extend the standard approach by 
allowing behavioral data to be generated as a mixture of 
multiple different processes and controlling parameters



Contaminant model

• A latent-mixture model that allows the to use either the logistic 
model or a simple contaminant process on each trial

– A discrete model indicator parameter z for each trial 
controls which process is used



Inferences of contaminant model



Latent mixture logistic and Cauchy model

• A latent-mixture model that allows each subject to use either 
the logistic or Cauchy model

• Can be thought of as a form of model selection at the subject 
level, sensitive to all forms of model complexity



Inferences for visual condition

• Inferences for the six subjects show the posterior probability of 
using each model

• Also inferred is the base-rate of model use



Hierarchical modeling

• Hierarchical models extend the standard approach by including 
a modeling account of how the basic model parameters 
themselves  are generated



Hierarchical model

• A hierarchical model of multiple subjects that allows for 
structured individual differences between them

– models the group distributions that generates the 
individual-level parameters



Inferences of hierarchical model



Generalization of hierarchical model to new subject



Common-cause modeling

• Common-cause models extend the standard approach by 
allowing the same psychological variables to influence multiple 
sorts of observed behavior



Effect of visual and auditory stimuli on shift and scale

• A model that assumes effect size differences in shift and scale 
with the change from auditory to visual stimuli



Inferences for two subjects

• The joint posterior for the two effect size parameters estimates 
a Bayes factor comparing no-effect vs effect models

– and allows inferences about the size of the effects, if there 
is evidence they exist, as for subject B



Common-cause model

• A common-cause model that assumes the same shift and scale 
parameters, via the same psychophysical function, apply to 
both modalities



Inferences of common-cause model



Prediction and generalization

• An extension of the common-cause model, observing only the 
first 60 out of 240 trials in the auditory condition, to allow

– prediction of the remaining 180 auditory trials

– generalization to a different (related) task, for all pof the 
visual trials



Prediction and generalization inference

• If the most likely alternative becomes a forced-choice, about 
80% of the predictions and generalizations turn out to be right



Conclusion



Theoretical freedom …

• Statistical methods for relating models to data are fundamental 
in science, since they allow

– parameter inference, data prediction, and model evaluation

• Bayesian methods allow theorists to develop, evaluate, and use 
richer generative models of how psychological variables and 
processes generate behavior



… with rigorous assessment …

• The coherent and general foundations of Bayesian statistical 
methods allow them to “scale up” to these theoretically highly 
expressive models

• Bayesian methods allow rigorous evaluation in terms of 
observation, and will naturally reign in models that do not 
describe and predict data well

– Models that formalize good additional theoretical 
assumptions will be simpler, and Bayesian evaluation is 
sensitive to this



… and flexible inferences

• Bayesian methods allow for inferences about

– The uncertainty about parameters, or joint uncertainty 
about multiple parameters, or the uncertainty of one 
parameter conditional on the value of another, …

– Inferences about both continuous values and discrete 
values, especially in latent mixtures

– Inferences and prediction about partially observed 
parameters or data

– Inferences and predictions about missing, partially observed 
or entirely unobserved parameters or data

– Evaluation of any model against any other model, based on 
available information

– …



Bayesian methods afford theoretical freedom with
rigorous assessment and flexible inferences



Room for improvement

• Better modeling of individual differences

– Current models are largely statistical rather than 
psychological

– This is fine as a place to start, but not to finish, and 
integration with psychometric theories is needed

• We need to construct informative priors as a matter of course

– Who wants to read a paper by researchers who knew 
nothing about the key variables before they started

• Common-cause modeling should be everywhere

– Important psychological variables should impact multiple 
behaviors, and we should break out of a “one model for one 
task” stovepipe
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