Prediction in the face of gradual and abrupt changes in the environment

Carlos Velazquez; Manuel Villarreal; Arturo Bouzas

Introduction

Humans and other animals often face changes in their sensory input. Whether these fluctuations are attributed to randomness or actual changes in the generative process is an important problem they must solve. Additionally, animals have to discriminate the type of change encountered as it may influence the strategy of adaptation used. After abrupt changes, obserthe strould be highly valuable as they provide informatio vations shoud be higlo per of tabity as coney alreal periods of stability as they convey already known information On the other hand, if the generative process changes gradually over time, observed outcomes can be used to estimate its rate of change from trial to trial. These strategies have been implemented by error-driven algorithms but are usually tested separately in the face of abrupt and gradual changes. In this work, we tested subjects predictions in a perceptual task with no changes, gradual changes, abrupt changes and a combination of abrupt and gradual changes. In these four conditions, we tested three error-driven models that have been used previously in the literature.

Method

24 subjects performed a perceptual decision making task where 24 subjects performed a perceptual decision making task where
they had to predict the position of a spaceship moving around they had Earth. Its position was generated from a Gaussian displanet Earth. Its position was generated from a Gaussian dis-
tribution where the mean could either remain constant, change tribution where the mean could either remain constant, change
abruptly, gradually, or change abruptly and gradually, which abruptly, gradually, or change abruptly and gradually, which
made our four experimental conditions. Each condition lasted made our for
300 trials.
(30)

Figura: Example participant in the four experimental conditions. The Figura: Example participant in the four experimental conditions. The
dots represent the observed position of the spaceship, the dashed blue line dots represent the observed position of the spaceship, the dashed blue line represents the subj
generative mean.

Results: errors

Figura: Histograms of error by condition

Figura: Prediction error after changepoint
Bayesian Modeling

Figura: The first row shows the graphical representation of the three models used, the second row represents the 95% High Posterior Density Interval for the predictions of each model in the abrupt-changes condition. The third one represents the predictions for the mixed condition. The first model is the PID, the second one is a delta-rule with a velocioty term, and the third one is a simple delta-rule model with a threshold that determines the learning rate.

Model Selection

Figura: The first pannel presents the Bayesian graphical model used to select between the 3 learning rules. The pannel on the right presents the posterior distribution of the probability of each model.

Discussion

1) Subjects predicted accurately the generative mean of the spaceship in the four experimental conditions.
2) The second figure shows that for most of the change-points in the abrupt-changes condition the difference between participant's predictions and the mean of the generating process goes to 0 after just one observation. However, in the mixed condition, the difference between the true mean and the mixediction shows more variance Additionally, the errors in the prediction shows mors varce. Adition the change-point trials of this condition show a bi-modal distribution, which could be associated with subjects trying to predict the next position of the spaceship following the pattern (speed) from previous trials.
3) Using a Bayesian latent mixture model we observed that a delta-rule that switches between a high and low learning rates is favored by around 85% of our subjects compared to a PID controller and a delta-rule with a velocity term.

References

Ritz, H., Nassar, M. R., Frank, M. J., \& Shenhav, A. (2018). A control theoretic model of adaptive learning in dynamic environments. Journal of cognitive neuroscience, 30(10), 1405-1421.
Velazquez, C., Villarreal, M., \& Bouzas, A. (2019). Velocity estimation in reinforcement learning. Computational Brain \& Behavior, 2(2), 95-108.

Contact Information

Laboratorio 25: bouzaslab25.com
Carlos Velazquez: carlos.unamlab25@gmail.com
Manuel Villarreal: jesus.mvu@gmail.com

