Introduction

Humans and other animals often face changes in their sensory
input. Whether these fluctuations are attributed to random-
ness or actual changes in the generative process is an impor-
tant problem they must solve. Additionally, animals have to
discriminate the type of change encountered as it may influence
the strategy of adaptation used. Atter abrupt changes, obser-
vations should be highly valuable as they provide information
of the new situation. However, their relevance should be less in
periods of stability as they convey already known information.
On the other hand, if the generative process changes gradually
over time, observed outcomes can be used to estimate its rate ot
change from trial to trial. These strategies have been implemen-
ted by error-driven algorithms but are usually tested separately
in the face of abrupt and gradual changes. In this work, we tes-
ted subjects predictions in a perceptual task with no changes,
oradual changes, abrupt changes and a combination of abrupt
and gradual changes. In these four conditions, we tested th-
ree error-driven models that have been used previously in the
literature.

Method

24 subjects performed a perceptual decision making task where
they had to predict the position of a spaceship moving around
planet Earth. Its position was generated from a Gaussian dis-
tribution where the mean could either remain constant, change
abruptly, eradually, or change abruptly and gradually, which

made our four experimental conditions. Each condition lasted
300 trials.
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Figura: Example participant in the four experimental conditions. The
dots represent the observed position of the spaceship, the dashed blue line
represents the subjects’ responses and the solid gray line represents the
generative mean.
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Results: errors

Prediction in the face of gradual and abrupt changes in the environment
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Figura: Histograms of error by condition
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Figura: Prediction error after changepoint
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the third one is a simple delta-rule model with a threshold that determines the learning rate.
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-igura: The first row shows the graphical representation of the three models used, the second row represents the 95 % High
Posterior Density Interval for the predictions of each model in the abrupt-changes condition. The third one represents the
predictions for the mixed condition. The first model is the PID, the second one is a delta-rule with a velocioty term, and
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Figura: The first pannel presents the Bayesian graphical model
used to select between the 3 learning rules. The pannel on the
right presents the posterior distribution of the probability of each
model.

Discussion

1) Subjects predicted accurately the generative mean of the
spaceship in the four experimental conditions.

2) The second figure shows that for most of the change-points in
the abrupt-changes condition the difference between
participant’s predictions and the mean of the generating
process goes to 0 after just one observation. However, in the
mixed condition, the difference between the true mean and the
prediction shows more variance. Additionally, the errors in the
change-point trials of this condition show a bi-modal
distribution, which could be associated with subjects trying to
predict the next position of the spaceship following the pattern
(speed) from previous trials.

3) Using a Bayesian latent mixture model we observed that a
delta-rule that switches between a high and low learning rates
is favored by around 85 % of our subjects compared to a PID
controller and a delta-rule with a velocity term.
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